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Abstract. A continuum medium approach is proposed to describe the finite size dependent effects for the
1D isotropic Heisenberg ferromagnet. The results are compared to the exact Bethe ansatz solution for the
finite chain. The approach is shown to adequately account for the behaviour of the eigenfunctions and
eigenenergies. The continuum is obtained by integration in Fourier space via introduction of cut-offs at the
integration limits and analytical continuation from the discrete lattice to the continuous medium. It offers
a new perspective on the instability of bound states, and reveals the linear behaviour of the amplitude in
the critical region and other features of the model in an analytical way. We further apply this approach to
investigate the long wavelength expansion of the master equation and to show the route of constructing
reliable approximations valid for more complicated models. It is concluded that the approach can be useful
to study mesoscopic spin systems.

PACS. 75.50.Xx Molecular magnets – 75.30.Ds Spin waves

1 Introduction

Design of molecular magnets as large spin clusters
with specific annular or globular geometries demands a
development of new theoretical models capable to accu-
rately describe large assemblies of interacting spins dis-
tributed on a curved surface. Since the low energy ex-
citation spectrum of such systems is characterized by a
wavelength which substantially exceeds the interspin sep-
aration, these models may well be based on a contin-
uum medium approximation of quantum spins. Analogous
strategies have been already applied successfully to study
electronic and vibrational structures for a wide range of
polyhedral clusters [1,2]. The usual continuum approxi-
mation refers to the quasiclassical spin limit: ~ −→ 0,
S −→ ∞ with ~S = const. In this limit, the quantum spin
behaves as a classical vector field on the support manifold.
This opens a route for applying topological analysis and
for obtaining special types of solitonic solutions [3].

The premise to the present programme is quite dif-
ferent. The lattice is indeed smoothened to a continuous
manifold, but the spins retain their quantum characteris-
tics. We examine the possibility to incorporate the size de-
pendent features which could be important for mesoscopic
spin systems into such a continuum limit description.

In the present work we show how such a continuum ap-
proach can be developed for the one-dimensional isotropic
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Heisenberg chain on the basis of the earlier continuum
treatments (e.g. [4–7]). The analytical continuation from
a discrete lattice to a continuum allows us to obtain the ex-
citation amplitudes explicitly. Moreover, we demonstrate
that such a continuum approach describes the finite size ef-
fects and, therefore, it is rather useful to study mesoscopic
systems. Interestingly, we find that the long wavelength
instability of the bound state which occurs at momenta
∼ 1/

√
N in Bethe’s finite chain solution [8] is adequately

described within the present continuum approach. Thus,
the 1D problem validates the proposed continuum treat-
ment and the long wave approximations derived on its ba-
sis by allowing comparison to the exact solution (see [9,10]
for a recent discussion). The insight gained in this way can
be used in treating more complicated models.

2 Bethe’s solution of the discrete problem

Let us consider the Heisenberg Hamiltonian for a one-
dimensional cyclic chain of N sites occupied by S = 1/2
spins.

H = −J
N∑
n=1

Sn · Sn+1

= −J
N∑
n=1

[
1
2

(S+
n S
−
n+1 + S−n S

+
n+1) + SznS

z
n+1

]
.

Here S±n ≡ Sxn ± iSyn are spin flip operators and the inter-
action constant J is taken to be positive for a ferromagnet.
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H acts on Hilbert space of dimension 2N spanned by
the orthogonal basis vectors |σ1 . . . σN 〉 where σn corre-
sponds to spin up or spin down state at the site n. The
state |0〉 ≡ | ↑ . . . ↑〉 with all spins aligned in one di-
rection is the ground state of H with the eigenenergy
E0 = −JN/4. Single magnon eigenstates are given by

|ψP 〉 =
1√
N

N∑
n=1

einPS−n |0〉, (1)

where the wavenumbers P = 2πl/N (l = 0, . . . , N − 1)
are the quantum numbers of the model. To treat the two
magnon excitation

|ψ〉 =
∑

1≤n1<n2≤N
a(n1, n2)S−n1

S−n2
|0〉,

Bethe [8] introduced an ansatz for the amplitude which ac-
counts for magnon interaction through some constraints
on its parameters. Additional constraints are imposed by
the normalization of the wave function and the transla-
tional symmetry. The latter one is simply expressed as

a(n1, n2) = a(n2, n1 +N) (2)

and plays an important role in formulating the continuum
limit. Furthermore, (2) implies a decoupling of the “center
of mass” and relative degrees of freedom:

a(n1, n2) =
exp(iPR)√

N
a(X); (3)

X = (n2 − n1) = 1, ..., N − 1;

R =
n1 + n2

2
·

Introducing then the auxiliary amplitude a(0) results in
the following master equation

[E − 2J ] a(X) + J cos
(
P

2

)
(a(X + 1) + a(X − 1)) =

J

[
cos
(
PX

2

)
a(0)− a(X)

]
(δX, 1 + δX, N−1) (4)

where δX, 1 is the Kronecker δ-symbol.
Notice that although the nonphysical amplitude a(0)

exactly vanishes on both sides of equation (4), its intro-
duction allows us to maintain the free magnon form of the
l.h.s. and to consider the r.h.s. as a magnon interaction. All
the solutions of equation (4) describing the subspace with
two flipped spins can be divided into four classes. Two
classes correspond to noninteracting objects, viz., the pro-
jections of the ground state and of the one-magnon states
onto this subspace. They are characterized by the ener-
gies J (1− cosP ) and the amplitude a (X) = cos

(
PX

2

)
where P = 0 for the former class and P 6= 0 for the lat-
ter one. Indeed, it is easily seen that such an amplitude
results in vanishing of the r.h.s. of (4), i.e., in the absence
of interaction. On the other hand, the l.h.s. gives a free
magnon dispersion. The remaining two classes correspond

to the scattered and bound states which form the set of
nontrivial solutions.

There exist two symmetry constraints imposed on the
amplitude. The first one follows from the commutation of
spin operators on different sites ( a (n1, n2) = a (n2, n1))
while the second one comes from the cyclic condition (2)

a (X) = a (−X) , (5a)

a(X) = exp
(

iPN
2

)
a(N −X). (5b)

Quantization of the total momentum PN/2π = l then
implies the existence of two types of eigenstates with dif-
ferent parity, symmetric and antisymmetric, for l , respec-
tively, even or odd. Equation (4) provides thus the desired
platform to introduce the continuum limit. In a subse-
quent section we first approach this limit by a straightfor-
ward Fourier expansion of the amplitudes.

3 Fourier expansion and the continuum limit

Let us consider the Fourier series expansion

a(X) =
1
N

∑
Q

b(Q) exp (iQX) ,

b(Q) =
N−1∑
X=0

a(X) exp (−iQX) . (6)

Equations (5a) and (5b) determine the range of values Q
depending on the total momentum:

1 = exp
(

iN
(
P

2
+Q

))
= exp

(
iN
(
P

2
−Q

))
. (7)

The first equality in (7) is derived by combining the two
symmetry relations∑

b (Q) exp (iQX) =
∑

b (Q) exp (−iQX)

= exp
(

i
PN

2

)∑
b (Q) exp (iQN − iQX) .

The second one is obtained in a similar way via the sub-
stitution X → N −X . Consequently, the following values
for Q in (6)

Q =
2πm
N

; m = 0, 1, ..., N − 1

are allowed for the even parity state and

Q =
2πm
N

+
π

N
; m = 0, 1, ..., N − 1 (8)

for the odd parity state.
Consider first the symmetric solution. Multiplying

both sides of equation (4) by exp(−iQX) and summing
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over X , one obtains the Fourier components:(
E/2J −

(
1− cos

(
P

2

)
cosQ

))
b(Q) =

cosQ
N

∑
Q′

b(Q
′
)
(

cos
(
P

2

)
− cos

(
Q
′
))

, (9)

or finally,

b(Q) = C
cos (Q)[

1−E/2J − cos
(
P
2

)
cosQ

] ,
where

C = − 1
N

∑
Q′

b(Q
′
)
[
cos
(
P

2

)
− cosQ

′
]
.

This implies particularly that b (Q) is an even function
of Q, in accordance with the symmetry constraint (5a).

The compatibility condition is derived by substituting
b(Q) into C, viz.,

1 =
1
N

∑
Q′

cos
(
Q
′
)[

cos
(
P
2

)
− cosQ

′
]

[
E/2J − 1 + cos

(
P
2

)
cosQ′

] · (10)

It determines the energy Es of the symmetric bound state
lying below the two-magnon continuum, E < EL (EL =
2J
(
1− cos

(
P
2

))
).

Equation (10) can be solved analytically in the ther-
modynamic limit (N →∞) when Q becomes a continuous
variable ranging from 0 to 2π. In this limit the sum in (10)
is replaced by an integral,

1 =
1
π

∫ π

0

dQ
cos(Q)

[
cos
(
P
2

)
− cos(Q)

]
Es/2J − 1 + cos

(
P
2

)
cos(Q)

· (11)

It follows directly from (11) that the energy of the bound
state is thus

Es = J sin2

(
P

2

)
, (12)

which coincides with Bethe’s result [5,6].
Some care should however be taken to consider the

amplitude in the continuum limit

a(X) =
C

N

∑
Q

cos (Q) cos (QX)[
1−E/2J − cos

(
P
2

)
cosQ

] · (13)

A straightforward implementation of the continuum limit
as discussed above would lead to violation of the symmetry
constraint (5b). In order to preserve this constraint under
the analytic continuation, it is necessary to operate with
the symmetrized quantity, As, which coincides with a(X)
at the discrete points:

As(X) =
1
2

(a(X) + a(N −X)) .

This results in replacing the sum in (13) by an integral
and, respectively, C by C̄:

As(X) = − C̄
2

∫ π

0

cos (Q) cos (QX)[
Es/2J − 1 + cos

(
P
2

)
cosQ

] dQ
π

− C̄
2

∫ π

0

cos (Q) cosQ(N −X)[
Es/2J − 1 + cos

(
P
2

)
cosQ

] dQ
π
·

For integer X > 0 , one has (see, e.g., [11]):∫ π

0

cos (Q) cos (QX)
[B − cosQ]

dQ
π

=
1

2 (B2 − 1)1/2

×
[(
B −

(
B2 − 1

)1/2)X+1

+
(
B −

(
B2 − 1

)1/2)X−1
]
,

where B ≡ 1− 1
2 sin2(P2 )
cos(P2 ) . Then the symmetrized amplitude

becomes

As(X) =
C̄

2 sin2
(
P
2

) (cos2

(
P

2

)
+ 1
)

×
[
cosX−1

(
P

2

)
+ cosN−X−1

(
P

2

)]
, X > 0. (14)

The constant C̄ is determined by the normalization con-
dition

1 =
N−1∑
X=1

A2
s(X) (15)

where the summation ranges over the physical states of
the system. Taking (14) into account, one rewrites (15) as
follows

1 =
C̄2

4 sin4
(
P
2

) (cos2
(
P
2

)
+ 1
)2

cos2
(
P
2

)
×
N−1∑
X=1

[
cos2N

(
P

2

)
+ cos2(N−X)

(
P

2

)
+ 2 cosN

(
P

2

)]

=
C̄2

2 sin4
(
P
2

) (cos2
(
P
2

)
+ 1
)2

cos2
(
P
2

)
×

cos2
(
P
2

)
+ cosN

(
P
2

)
sin2

(
P
2

)
(N − 1)− cos2N

(
P
2

)
sin2

(
P
2

)
' C̄2

(
cos2

(
P
2

)
+ 1
)2

2 sin6
(
P
2

) ·

where exponentially small terms are neglected. Therefore,
the amplitude of the even-parity bound state is

As(X) =
1√
2

sin
(
P

2

)
×
[
cosX−1

(
P

2

)
+ cosN−X−1

(
P

2

)]
. (16)
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Let us now consider the antisymmetric solution. Proceed-
ing in the same manner as for the even-parity amplitude,
one obtains the Fourier transform of the master equa-
tion (4) which is identical to (9). A naive continuum limit
solution of the compatibility equation gives then the same
eigenenergy of the bound state (12). Within the contin-
uum limit, the amplitude is obtained by taking the anti-
symmetrized combination

Aa(X) =
1
2

(a(X)− a(N −X)) .

After an analogous normalization procedure, it is explic-
itly expressed as

Aa(X) =
1√
2

sin
(
P

2

)
×
[
cosX−1

(
P

2

)
− cosN−X−1

(
P

2

)]
. (17)

The orthogonality of the even and odd solutions on the
physical interval (X = 1, 2, ..., N − 1) can be easily veri-
fied. Both solutions are defined on the interval P ∈ [0, 2π)
and are distributed in an interlaced order according to
even or odd values of l = NP/2π. The total number of
bound states is thus approximately equal to N. However,
a closer look at equation (10) for the energy of the bound
state shows that the even parity solution is stable for all
the values of total momentum or, in other words, it does
not cross the lower bound of the two magnon continuum.
Indeed, the r.h.s. of equation (10) at the crossing point di-
verges due to the singularity at Q = 0. This is actually the
way which brings the even parity solution to be below the
magnon continuum. On the contrary, due to the shifted
sequence of allowed values of Q in (8), the odd parity
solution may cross the scattered magnon states at some
critical total momentum P = Pc. Indeed, one easily finds
the exact value of Pc for the discrete chain because (10)
directly transforms to

1 =
1− cos

(
Pc
2

)
N

∑
Q= π

N ,
3π
N ...,2π− π

N

1
(1− cosQ)

· (18)

After summation in (18) (see, e.g. [11]), it gives an exact
analytic relation(

1− cos
(
Pc

2

))
=

2
N
· (19)

Therefore Pc ' 4√
N

. It is interesting to note that this value
of Pc is precisely the Bethe’s estimate for a finite chain.
It is also quite remarkable that the result in (19) actually
is the exact lower boundary solution of Bethe’s transcen-
dental equation for the bound states. In this meaning it
is “more exact” than the Pc value obtained from a 1/N
expansion [8]. We mention that (19) is also an outcome
of problem (6) in reference [10], and can be derived by
inspection of the respective Bethe equation

sinh (Nv)
(

cosh v − cos
(
P

2

))
= sinh v (1 + cosh (Nv))

where v = i (k2 − k1) ∈ R and k1, k2 are Bethe quantum
wavenumbers.

It can now be seen that in order to account for the
long wavelength instability, the continuum limit must de-
scribe the finite size difference between both types of so-
lutions. We note that the neighbourhood of ∼ π

N around
the singular point Q = 0 should be excluded from consid-
eration since there are no physical states with Q < π

N in
the discrete counterpart. Therefore, the value of the shift
mentioned above plays the role of a natural cutoff for the
continuum limit. The singularity which keeps the even-
parity solution away from the boundary of the scattered
states disappears in the continuum limit of the instability
condition and instead of (18), one arrives at the equation

1 =

(
1− cos

(
Pc
2

))
π

∫ π+ π
N

π
N

dQ
(1− cos (Q))

·

The choice of the upper limit of integration is mainly mo-
tivated by the reasons of preserving the “volume” of the
phase space as a result of introducing the cutoff at long
wavelengths. The discrete states entering the summation
in equation (18) can be divided in two equivalent parts
connected by the relation Q

′
= 2π − Q and containing

N/2 states each (consider N to be an even number ) and
the sum can be restricted to half the number of discrete
points after including the trivial factor 2. As the total
volume of the phase space is 2π, we get an elementary
“volume” 2π/N corresponding to one state in the con-
tinuum representation. The elementary region of the first
point at the lower boundary of integration thus covers
the interval [π/N, π/N + 2π/N). The total integration in-
terval is formed by the union of N/2 such intervals, i.e.
[π/N, π/N + 2π/N) ∪ ... [π − π/N, π − π/N + 2π/N) =
[π/N, π + π/N) which is used in the equation above. Thus
we have applied the shift to the whole interval and kept
the shifted value of the upper limit which does not affect
the low energy spectrum. Then we obtain the equation(

1− cos
(
Pc

2

))
=
π

2
sin
( π
N

)
. (20)

It leads to the approximate continuum result: Pc ' 2π√
N
.

Admittedly, some arbitrariness in the choice of integration
limits can slightly modify the results of the approxima-
tion. For instance, dropping the π/N shift of the upper
limit does not change the above result, although it intro-
duces a 1/N correction to the r.h.s. of (19). However it
can be easily checked that the continuum version of the
eigenenergy equation (10) with our choice of the upper
limit reproduces Bethe’s exact result for P at the bound-
ary of the Brillouin zone (Ea = J), while the omission
of the π/N shift at the upper boundary yields a slightly
higher energy.

We recall that in the exact solution the energy of the
odd parity bound state Ea is higher than that of the even
parity state (12). The same follows from our approach due
to the shifted limits of integration compared to (11). After
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integration we get:

1 +
2
π

D

G
= − 2

π

(
G+ cos

(
P
2

))√
(G2 − 1)

arctan

(√
(G2 − 1)

D

)
(21)

where G = Ea/2J−1

cos(P2 )
and D = sin

(
π
N

)
.

It follows from (21) that the odd-parity bound state
lies above the even-parity one and their separation grows
as the wavelength increases. At the boundary of the
Brillouin zone both states have the same energy J . Beyond
the critical momentum (20), for large N , we can apply the
1/N expansion in (21). This results in the correction for
the bound state energy for P � Pc:

Ea ' J sin2

(
P

2

)(
1 +

4
N

cos
(
P
2

)
(
1 + cos2

(
P
2

))
)
. (22)

Comparison with the respective correction following from
the Bethe ansatz

Ea,s ' J sin2 P

2

(
1± sin2 P

2
cosN−2 P

2

)
, (23)

where the +/− signs correspond to odd and even solu-
tions respectively, shows that our approximation gives a
power law correction while the exact solution predicts an
exponential one. This is a consequence of the continuum
approximation which is naturally expected to be inferior
at large momenta as compared to small P . Indeed, if we
now determine the expansion corresponding to the region
close to the critical momentum ( P − Pc � Pc ) we find
the same behaviour for both the exact solution and our
approximation with the respective values of Pc:

Ea
J
' 2

(
1− cos

(
P

2

))
− 3P 2

c

2N

(
P

Pc
− 1
)
.

Exactly as for the Bethe ansatz no bound states are pos-
sible at P < Pc: the equation (21) has no real odd parity
solutions since the quantity G2 < 1 ( G < 0 ). Instead
there exist plane wave two magnon states. The excitation
spectrum of the odd-parity bound state is illustrated in
Figure 1 where the size dependent features are empha-
sized by taking a small number of spins N = 20. Note
that all the energies displayed in the figure are smooth
functions of total momentum. For comparison with the
exact solutions of the Bethe Ansatz, we must evaluate
these functions at the discrete points, corresponding to
the allowed momenta for the finite chain. For the even so-
lutions the two results coincide with exponential accuracy
as noted above (Eqs. (12) and (23)). For the odd solutions
a detailed numerical comparison is presented in Table 1.

In order to clarify the physical meaning of the insta-
bility, it is worth noticing that within the present ap-
proach, the term on the r.h.s. of the equation (4) does not
play the role of a boundary condition for free magnons,

        

        

        

        

        

        

        

        

        

0 3
0

1

P
c

(0) P
c

 

two magnon continuum

bound states

~ N
 - 1 / 2

 Fig. 1. The spectrum of the odd-parity bound state in (21)
(dashed line) has a higher energy than the even-parity one
(12) (solid line) and decays into scattered magnon states at
Pc ' 2π√

N
, N = 20, (Eq. (20)). The value of Pc is close to the

exact one P
(0)
c defined by (19).

Table 1. Energy of the odd parity solutions in the discrete
points for N = 20. The value Eexact

a is obtained from Bethe’s
ansatz and Ea is determined by the equation (21). The critical

momentum for the exact solution is P
(0)
c = 0.894 and for the

approximate solution Pc =1.4. Therefore the smallest allowed
values of l are 3 and 5 respectively.

P = 2π
N l, l = 3, 5, 7, 9 0.942 1.571 2.199 2.827

Ea/J − 0.550 0.862 0.999

Eexact
a /J 0.215 0.500 0.794 0.976

EL/J 0.218 0.586 1.092 1.687

as in Bethe’s ansatz. In other words it does not van-
ish exactly. This term actually describes the magnon in-
teraction. As shown below, its vanishing at the critical
point is the actual origin of instability. Indeed, substitut-
ing EL (P ) = 2J

(
1− cos

(
P
2

))
into (13) for the odd-parity

amplitude and summing over the range (8) leads to

a(X) = U

(
N

2
−X

)
. (24)

The constant U depends only on N , viz., U =
√

24

N3/2 +
O
(
N−5/2

)
. The formula (24) is valid for X ≥ 1, i.e.,

within the physical range of relative separation. However,
as discussed in references [4] and [6], equation (4) defines
the amplitude at X = 0 and in fact, this definition should
be based on the arguments of continuity of the wave func-
tion. Therefore by the continuity argument we can ex-
tend (24) to the whole range of X . Thus, as the energy of
the bound state crosses the lower boundary of the magnon
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A
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n
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2N

)1/
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-iP

R
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(n
2
 - n

1
-1) / N = 0                         (n

2
 -  n 

1
 +1) / N  = 1

Fig. 2. The continuum amplitude of the-odd parity bound
state as a function of distance between overturned spins for
N = 100 in the physical region: 1 − 1

N ≤
n2−n1
N ≤ 1

N . Total
momentum P of the excitation is equal to 2π

N
l where odd in-

teger l ranges in the interval [0, N − 1]. Extrema are located
at the edges of the interval, i.e., at positions of the nearest
neighbours.

continuum, the amplitude becomes linear in the relative
separation between spin deviations. Then the bracketed
term in (4) becomes:

cos
(
P

2

)
a(0)− a(1) = U

[
cos
(
P

2

)
N

2
−
(
N

2
− 1
)]

= U

(
1− N

2

[
1− cos

(
P

2

)])
.

One can see that the magnon interaction becomes equal
to zero precisely at the critical point (19). This means
that the bound state decays simply due to vanishing of
interaction at Pc as a consequence of the linear spatial de-
pendence of the amplitude. It can be also demonstrated
that the continuum approximation agrees with the above
arguments. For instance, Figure 2 displays the evolution
of the odd-parity amplitude (17) over the Brillouin zone.
This amplitude becomes linear in the long wavelength re-
gion whereas the even parity one (Fig. 3) remains stable
due to retaining its nonlinear solitonic form for all values
of the total momentum. Particularly, at small P , it shows
a quadratic dependence.

A direct comparison shows that the amplitudes in the
continuum limit coincide with Bethe’s exact solution as

        

        

        

        

        

        

        

        

        

        

        

        

        

        

0.0

0.5

1.0

3

0

P

A
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  (
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)1/
2  e

xp
(-

iP
R
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(n

2
 - n

1
-1) / N = 0                              (n

2
 - n 

1
+1) / N  = 1

Fig. 3. The continuum amplitude of the even-parity bound
state as a function of distance between overturned spins. Total
momentum P of the excitation is equal to 2π

N
l where integer

l takes even numbers from the interval [0, N − 1]. The present
result coincides with the exact one obtained in [8] via using
Bethe’s ansatz.

N →∞. For instance, at P = π− 0+, Bethe’s normalized
solution gives rise to a bound state with two overturned
spins located precisely at the neighbour sites [9,10]:

a(X) =
1√
2

[exp (−v (X − 1))

± exp (−v (N −X − 1))] v −→∞ =
1√
2

(δX, 1 ± δX, N−1) .

Here

v = − ln
(

cos
(
P

2

))
, X = 1, ..., N − 1. (25)

Interestingly, the same strictly Kronecker-type solitonic
behaviour results from our equations (16) and (17) since
cosn

(
π
2 − 0+

)
= sinn (0+) = δn, 0. This solution cor-

responds to the state with two spin deviations at the
nearest-neighbour sites propagating along the chain as a
single object without any internal dispersion. For smaller
momenta, the amplitude a(X) spreads over the lattice,
although its maximum is always located at the nearest-
neighbour position. For example, in the neighbourhood of
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P = π, one introduces P̃ = π − P � 1 and obtains then

A(X) '
cos
(
P̃
2

)
√

2

[
exp

(
− (X − 1)

∣∣∣ln(P̃)∣∣∣)
± exp

(
− (N −X − 1)

∣∣∣ln(P̃)∣∣∣)] .
In the opposite limit of long wave excitation ( 1√

N
< P �

1, X � N/2) , one easily derives that

A(X) '
sin
(
P
2

)
√

2
exp

(
− (X − 1)

P 2

8

)
.

It is worth mentioning that these results agree with
Bethe’s ansatz only in the physical region but not out-
side it ( X < 1 and X > N − 1) where Bethe’s solution
requires cos(P2 )a(0) − a(1) = 0. For instance, at P = π ,
this implies a(0) =∞, whereas our result is finite.

4 Long wavelength expansion

In the previous section we have performed the continua-
tion to infinity in the reciprocal Fourier space via replacing
finite sums by integrals and keeping track of the discreteN
values in the integration limits. The present section deals
with an alternative differential approach derived from the
master equation by introducing the continuum limit in
direct space. This is achieved by defining the length scale
parameter, namely, the lattice spacing c = L/N where L is
the length of the chain. The continuum limit means then
that N → ∞, c → 0, while L is kept constant and the

following correspondence applies:
∑
X → 1

c

L∫
0

dx ,
∑
P →

2π∫
0

d(pc) and δ X, 1 → cδ(x− c) where x = Xc and p = P
c .

Equation (4) is thus transformed to the following differ-
ential equation:[
E − 2J + 2J cos

(pc
2

)
cos
(
−ic

∂

∂x

)]
a(x) =

Jc
[
cos
(px

2

)
a(0)− a(x)

]
[δ(x− c) + δ(x+ c)] . (26)

It is worth mentioning that the wave phase which bears a
direct physical meaning remains unchanged under trans-
form P∆ = pc where ∆ is an integer (∆ = 1 for the
nearest neighbours). For instance, ∆ determines the an-
gle between the neighbouring spins participating in the
spin wave excitation. It can be treated as an expansion
parameter in solving equation (26).

It is of interest to study a variety of approximations
introduced by truncating the free magnon dispersion due
to their significance in applications or when no exact ex-
pression for the one-magnon spectrum is known. Taking a
long wavelength expansion in powers of (pc) and

(
−ic ∂∂x

)

in the l.h.s. of (26) which describes the free magnon dis-
persion, one obtains the quadratic approximation[
E/2J − 1 +

(
1− p2c2

8
+
c2

2
∂2

∂x2

)]
a(x) =

c

2

[
a(0) cos

(px
2

)
− a(x)

]
[δ(x− c) + δ(x+ c)] .

For the even-parity solution, the eigenenergy is deter-
mined by the equation

1 = − 2
π

∫ π

0

cos(qc)
[
cos(pc2 )− cos(qc)

]
(D + (qc)2)

d(qc), (27)

where D ≡
(
pc
2

)2−E/J should be positive to support the
existence of a bound state. Then, in the long wave limit,
(27) yields a bound state with the energy E1 which lies
slightly below the lower boundary of the two-magnon con-
tinuum of the exact solution: EL−E1 = J

(
pc
4

)4
, pc� 1,

while EL−Es = J
4

(
pc
2

)4
, pc� 1. However, such solution

is not physical because it crosses EL at some finite value
of (pc). This implies that a quadratic approximation is in-
sufficient to describe the bound state even qualitatively,
as anticipated, since the energy of the exact ground state
peals off from the continuum in the 4th order in P .

One may therefore take higher-order terms in the free
magnon dispersion to improve the quadratic approxima-
tion and, indeed, obtain both types of bound states within
the fourth-order approximation to the free magnon disper-
sion. However, one should remind that the factor cos

(
pc
2

)
in the l.h.s. of (26) originates from an explicit use of the
translational symmetry in deriving equation (3). Thus as
far as the translational motion is taken precisely into ac-
count, any long wavelength approximation can be con-
sidered only for the relative motion. These approxima-
tions are described as a series expansion in the powers of(
−ic ∂∂x

)
. The simplest one derived in such a manner is the

following second-order differential equation[
E − 2J

(
1− cos

(pc
2

))
+ J cos

(pc
2

)
c2
∂2

∂x2

]
a(x) =

Jc
[
cos
(px

2

)
a(0)− a(x)

]
[δ(x− c) + δ(x+ c)] . (28)

We show that the solution of equation (28) describes the
bound state lying below the true two-magnon continuum
and actually is very close to the exact solution in the whole
interval of (pc).

In the long-wave limit ((pc) � 1), the approxi-
mate bound state energy, Ẽs, is Ẽs/2J − 2 sin2

(
pc
4

)
'

−1.57 sin4
(
pc
4

)
cos
(
pc
2

)
, while the exact solution can be

cast in the form Es/2J − 2 sin2
(
pc
4

)
= −2 sin4

(
pc
4

)
.

The long wave amplitude becomes very close to the
exact one as well. For example, for X � N/2, one
obtains: a(X) = 0. 334 (pc) exp

(
−0. 124 (pc)2 (x

c − 1
))

.
Notice that the approximate solution coincides with the
exact one (Es = J) at the boundary of the Brillouin zone.



518 The European Physical Journal B

We now demonstrate that the long-wave approxima-
tion is capable to adequately describe the aforementioned
instability. Let us first determine the crossing point for
the finite chain solution corresponding to the truncated
magnon dispersion. By analogy with (18), one has

1 =
2

N cos
(
Pc
2

) ∑
Q= π

N ,...,2π−
π
N

cos (Q)
(
cosQ− cos

(
Pc
2

))
Q2

·

Its numerical solution gives Pc ' 5. 66√
N
, while its continuum

counterpart is pc ' 6. 68
c
√
N
. Comparison of these values with

the corresponding one in (19) and (20) obtained without
truncation shows a remarkably good agreement. One may
also figure out that the truncation tends to increase the
instability region and such tendency has a clear physical
explanation. The physics behind the contrasting long wave
behaviour of the two types of bound excitations is simi-
lar to that of bonding and antibonding electron states.
As is illustrated by Figures 2 and 3, the difference in the
absolute values of both amplitudes is the largest at large
separations between the flipped spins. Thus, spins in an
odd-parity state are bound more loosely than in the even-
parity one. Such difference becomes more pronounced as
the total momentum decreases. For a long-wave excitation,
the flipped spins are distributed over a larger distance cov-
ering the region of the depleted odd parity amplitude, the
“weak link” of the collective excitation. If the magnons are
stiff enough, they are able to destroy such a bound state.
Since the approximations discussed above in connection
with equation (28) consist in replacing the true magnon
dispersion by a more stiff dependence, a disruption of the
pair at shorter wavelengths becomes possible.

Altogether with the energy spectrum illustrated by
Figure 4, one may conclude that the truncation approxi-
mation is rather close to the exact result and the reason for
this lies actually in the behaviour of the amplitude studied
in the present paper. Indeed, we show that spin deviations
in the bound state are most likely to occur at the nearest-
neighbour sites. In other words, the two magnons move
throughout the lattice with essentially the same velocity
and the shape of this wave is rather smooth, or, in other
words, the dispersion of the relative motion in the bound
state is small and its linearized treatment is thus fully
justified. On the contrary, the states corresponding to the
separated magnons are substantially delocalized over the
whole lattice and, therefore, their amplitudes are localized
in the momentum space. In fact, for a given total momen-
tum, such values of the relative momentum can be used
to parametrize the continuum of scattered magnon states.
Hence, one may predict that for scattered states, the long-
wavelength approximation would give rather poor results.
This is easily seen by considering the projection of the
single magnon state onto the subspace discussed in the
present work. As mentioned in Section 2, its exact ampli-
tude is cos

(
PX

2

)
and this ensures that such state is in-

teraction free for all momenta. Then, by introducing the
exact amplitude in the approximate equation (28), one
obtains its energy Et1/J = 4 sin2

(
P
4

)
− P 2

4 cos
(
P
2

)
. It ob-
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Fig. 4. Spectrum of the two-magnon excitations within the
continuum limit approach for N → ∞. The bound state so-
lution of the truncated master equation (27) is indicated by
letter T. This approximation is rather close to the exact one
for the entire Brillouin zone, and for finite N it reproduces well
the critical point of the odd-parity bound state (28).

viously provides a poor estimate because it is even lower
than the energy of the bound state.

5 Conclusions

By means of a further development of the continuum ap-
proach [4–6], we have obtained the amplitude of the two-
magnon bound state for the 1D ferromagnetic S = 1/2
Heisenberg model. It coincides with Bethe’s exact solu-
tion in the thermodynamic limit. The agreement of the
present approach with the exact solution for a finite chain
encourages further application of this approach to meso-
scopic systems. The continuation procedure is based on
the explicit inclusion of the translational symmetry into
the amplitude. This allows us to obtain for the first time
the orthonormalized continuous forms of the two types of
solution with even and odd parities as N →∞.

We have also shown that the present approach ad-
equately describes the contrasting behaviour of the two
types of bound long wavelength magnon excitations. The
instability of the odd-parity bound state occurs at rather
long wavelengths, of the order of 1/

√
N . The physics of

this instability is related to vanishing of the magnon inter-
action which remains hidden within Bethe’s ansatz treat-
ing it as the boundary condition. While the even parity
bound state retains its nonlinear solitonic-type shape for
all values of the total momentum of the excitation, the
odd-parity one acquires a linear shape throughout the
whole lattice at the critical point where it dissociates into
free magnons.
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In view of further applications of the present con-
tinuum limit approach to more complicated geometries,
we have analysed different long-wave approximations. We
have solved the truncated version of the exact differential
equation describing the continuum limit in 1D and esti-
mated its deviation from the exact solution due to lineariz-
ing the magnon dispersion. As anticipated, the quadratic
truncation fails to describe a bound state. Its further im-
provement which takes the translational symmetry into
account provides a good agreement with the complete
solution over the whole Brillouin zone, even including
the size dependent instability mentioned above (see, e.g.,
Fig. 3). The fact that such approximation turns out to
do so well demonstrates that the formation of a bound
excitation requires the magnons to move with nearly the
same velocity. The longer the total wavelength of the ex-
citation, the larger is the dispersion, and the weaker the
bound state.
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